Skip to content

Commit

Permalink
Merge pull request #26860 from joshuahansel/th-page
Browse files Browse the repository at this point in the history
Added a thermal hydraulics applications page
  • Loading branch information
joshuahansel authored Mar 7, 2024
2 parents 1887192 + 0d2f88e commit 466e7d9
Show file tree
Hide file tree
Showing 2 changed files with 134 additions and 1 deletion.
4 changes: 3 additions & 1 deletion modules/doc/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -56,13 +56,15 @@ Extensions:
Application Usage: application_usage/index.md
Application Development: application_development/index.md
Framework Development: framework_development/index.md
NCRC Applications: help/inl/applications.md
Modules: modules/index.md
MOOSEDocs: MooseDocs/index.md
Infrastructure: infrastructure/index.md
Syntax Index: syntax/index.md
Source Index: /source/index.md
A-to-Z Index: help/a-to-z.md
Applications:
Thermal Hydraulics: applications/thermal_hydraulics.md
NCRC Applications: help/inl/applications.md
Gallery: /gallery.md
News: newsletter/index.md
Citing: citing.md
Expand Down
131 changes: 131 additions & 0 deletions modules/doc/content/applications/thermal_hydraulics.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
# Thermal Hydraulics

## MOOSE Modules for Thermal Hydraulics Modeling

MOOSE includes modules providing versatile, general-purpose thermal hydraulics capabilities. Collectively, these modules solve for mass, momentum, energy, and species conservation in multicomponent, multiphase flows using incompressible, weakly-compressible, or fully compressible formulations for steady-state or transient calculations in 1D, 2D, or 3D geometries. These capabilities range in fidelity and computational expense, as illustrated in [TH_Scales].

!media thermal_hydraulics/misc/TH_scales_new.png
style=width:50%;display:block;margin-left:auto;margin-right:auto;
caption=MOOSE modules support from Reynolds-Average Navier Stokes (RANS) Computational Fluid Dynamics (CFD) modeling to 0D lumped-parameters modeling.
id=TH_Scales

The following table summarizes the MOOSE modules providing thermal hydraulics capabilities.
The "Typical Runtime" column corresponds to a rough estimate of how much time it takes
to run 100 time steps for a problem with the number of elements equal to the "Typical Element Count"
value, using serial execution of the application.

| Module | Scale | Flow-Formulation | Dimension | Typical Element Count | Typical Runtime | Typical Simulations |
| :---------------------------------------------------------------------- | :------------------------------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------- | :----------------------------------------------------------------- | :-------------------- | :-------------- | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [Navier-Stokes](navier_stokes/index.md) | Coarse-Mesh CFD \\ \\ RANS simulations | Incompressible, Weakly-Compressible, or Fully-Compressible\\ \\ Single- or Multi-Phase \\ \\ Single- or Multi-Component Flow | Typically, 2D, 2D axisymmetric, or 3D \\ \\ Can also be used in 1D | 10,000 | 1 minute | Flow through nuclear reactor core or plena \\ \\ 3D multi-phase flow in pipes \\ \\ Natural convection flow in open cavities |
| [Subchannel](https://subchannel-dev.hpc.inl.gov/site/index.html) (To be released in 2024) | Subchannel Scale | Incompressible or Weakly-Compressible \\ \\ Single-Phase \\ \\ Single- or Multi-Component Flow | 3D | 100,000 | 10 seconds | Flow development through nuclear reactor fuel assembly \\ \\ Thermal hydraulics analysis of nuclear reactor assembly blockage \\ \\ Natural convection cooling in nuclear reactors low-flow assemblies |
| [Thermal Hydraulics](modules/thermal_hydraulics/index.md) | Lumped-Parameters Simulations | Compressible \\ \\ Single-Phase; Single-Component Flow | 1D, 0D | 100 | 10 seconds | Heat extraction unit from nuclear reactor core \\ \\ Thermal loops with significant compressibility effects |
| [Porous Flow Module](modules/porous_flow/index.md) | Coarse-Mesh CFD | Incompressible, Weakly-Compressible, or Fully-Compressible Porous Flow (no inertial term) \\ \\ Single- or Multi-Phase \\ \\ Single- or Multi-Component Flow | Typically, 2D, 2D axisymmetric, or 3D \\ \\ Can also be used in 1D | 10,000 | 1 minute | Flow through fractured porous media \\ \\ Underground coal mining \\ \\ CO storage in saline aquifers |

## MOOSE-Based Applications for Thermal Hydraulics Modeling

Here we note a selection of MOOSE-based thermal hydraulics applications, which
are developed as part of the
[Nuclear Energy Advanced Modeling and Simulation (NEAMS) program](https://neams.inl.gov/).
Some of these applications are open-source, whereas some are export-controlled
and distributed via the [Nuclear Computational Resource Center (NCRC)](https://inl.gov/ncrc/);
see [help/inl/applications.md] for more information.

| Application Name | Distribution | Based On | Added Features |
| :------------------------------------------------------------- | :----------- | :------------------------ | :----------------------------------------------------------------------------------------------------------------------------------------------------- |
| [Cardinal](https://cardinal.cels.anl.gov/) | [Open-source](https://github.com/neams-th-coe/cardinal) | [NekRS](https://github.com/Nek5000/nekRS) CFD | CPU and GPU capabilities for RANS, LES, and DNS. Additional features include Lagrangian particle transport, an ALE mesh solver, overset meshes, and more. |
| Pronghorn | [NCRC](https://inl.gov/ncrc/) | Navier-Stokes Module | Export-controlled correlations for pressure drop, heat exchange, and mass transfer in advanced nuclear reactors. |
| [SAM](https://www.anl.gov/nse/system-analysis-module) | [NCRC](https://inl.gov/ncrc/) | MOOSE Framework | Additional physics and component models for realistic plant modeling and reactor safety analysis. |
| RELAP-7 | [NCRC](https://inl.gov/ncrc/) | Thermal Hydraulics Module | Two-phase flow model and component models with additional closures appropriate for LWRs. |
| Sockeye | [NCRC](https://inl.gov/ncrc/) | Thermal Hydraulics Module | Adapted correlations and specific 1D and 2D models for high-temperature heat pipes. |

## Examples Gallery

!row!
!col! small=4 medium=4 large=4

### Molten Salt Reactors

!media thermal_hydraulics/misc/example_msr.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=RANS simulation of conjugated heat transfer in a pool-type molten salt reactor concept using the MOOSE Navier-Stokes module.
id=mcre

!media thermal_hydraulics/misc/example_msre.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Power density (left), fuel temperature (center), and void fraction distribution (right) during the steady-state operation of the Molten Salt Reactor Experiment using the MOOSE Navier-Stokes module RANS simulation.
id=msre

!col-end!

!col! small=4 medium=4 large=4

### High Temperature Reactors

!media thermal_hydraulics/misc/example_httf.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Steady-state operation of Oregon State University's High Temperature Test Facility (HTTF) using the MOOSE Navier-Stokes module coarse-mesh CFD capability.
id=httf

!media thermal_hydraulics/misc/example_httr.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Temperature in fuel blocks of the High-Temperature Engineering Test Reactor (HTTR) during steady-state operation using the MOOSE Thermal Hydraulics Module (THM).
id=httr

!col-end!

!col! small=4 medium=4 large=4

### Liquid-Metal cooled Reactors

!media thermal_hydraulics/misc/example_subchannel.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Steady-state operation of a fuel assembly in a liquid-metal-cooled reactor using the Subchannel Module.
id=subchannel

!media thermal_hydraulics/misc/example_subchannel_lf.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Simulation of internal recirculation in low-flow assemblies of a sodium-cooled fast reactor driven by natural convection, conducted using the Subchannel Module.
id=subcnahhel_lf

!col-end!

!col! small=4 medium=4 large=4

### Two-Phase Flow

!media thermal_hydraulics/misc/example_rayleigh_benard.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Two-phase Rayleigh-Benard convection in a 3D cavity using the drift-flux mixture model in the Navier-Stokes module, where the flow boils at the bottom plate and condenses at the top plate.
id=rayleigh_benard

!media thermal_hydraulics/misc/example_two_phase_channel.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Two-phase flow stratification in a flow bed using the MOOSE Navier-Stokes module Euler-Euler capabilities, illustrating phase-fraction (top), phase-specific velocities (center), and pressure (bottom).
id=two_phase_channel

!col-end!

!col! small=4 medium=4 large=4

### Laser Welding

!media thermal_hydraulics/misc/example_laser_weld.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Melt-pool evaluation during laser welding, simulated using the MOOSE Navier-Stokes module.
id=laser_weld

!col-end!

!col! small=4 medium=4 large=4

### Corrosion and Erosion

!media thermal_hydraulics/misc/example_corrosion.png
style=width:90%;display:block;margin-left:auto;margin-right:auto;
caption=Prediction of critical spots for corrosion and erosion in a double-elbow pipe using the MOOSE Navier-Stokes module.
id=corrosion

!col-end!

!row-end!

0 comments on commit 466e7d9

Please sign in to comment.