Skip to content

yu45020/MLogit_Friends

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multinomial Logit and Variants From Scratch

Model files are standard alone

  • Standard Multinomial Logit: mlogit.py
  • Multinomial Logit With Latent Class: mlogit_latent_class.py

The utils.py file contains stable version of softmax function and numeric hessian approximation via the central finite difference. The Hessian matrix may not be invertible or the inverted matrix has non-positive values in diagonal, so standard error is calculated by SVD decomposition on the Hessian and inverted diagonal matrix.

Note, the scipy.optimize.minimize changes beta when calculating gradient and hessian, so caching forward calculation is not necessary.

Standard Multinomial Logit

Assume each observation is IID.

Notation

N is number of observation, K is number of choices, M is number of features, X: [N,T,K,M], Y: [N,T], and $\beta$: [M,]

Utility for choice $k$ is

$$ U_{k} = X_{k}\beta $$

Let $M = \max X_k \beta$. The probability of choosing $k$ is

$$ P_{k} = \frac{exp(U_{k} - M)}{\sum_{j=1}^{K} exp(U_j - M)} $$

The log loss is

$$ \begin{align*} LL_i & = \sum_{k=1}^{K} Y_{ik} log(P_{ik}) \\ & = \sum_{k=1}^{K} Y_{ik} (U_{ik} - M) - \sum_{k=1}^{K} Y_{ik} log( \sum_{k=1}^{K} exp(U_{ik} - M)) \end{align*} $$

The Hessian is

$$ \begin{align*} H_jm & = -\frac{\partial}{\partial \beta_j} \frac{\partial LL}{\partial \beta_m} \\ & = - \sum_{k=1}^{K} \frac{\partial P_{k}}{\partial \beta_j} X_{km} \\ & = - \sum_{k=1}^{K} P_k \left(X_{kj} - \sum_k P_k X_{kj} \right) X_{km} \end{align*} $$

The standard error is

$$ se = \sqrt{diag\left((-H)^{T}\right)} $$

or use SVD to decompose $H$ and then take the inverse of the diagonal matrix D.

Latent Class

Notation: H is individual level to determine latent class probability. Q is number of latent class. $P_{tkq}$ is predicted probability for choice k in latent class q at time t. Data: Y:[N,K], X:[N,K,M], H:[N,T,L] Parameter: $\beta$: [M,Q], $\gamma$:[L,Q] Model:

$$ \begin{align*} P_{tkq} & = \frac{exp(X_{tk} \beta_{q})}{\sum_{j=1}^{K} exp(X_{tj} \beta_q)} \\ W_q & = \frac{exp(\sum_t H_t \gamma_{q})}{\sum_{j=1}^{Q} exp(\sum_t H_t \gamma_{j})} \\ L_{iq} & = \prod_t \prod_k P_{tkq}^{Y_tk} \\ L_i & = \sum_{q}^{Q} L_{iq} W_q \\ LL_i & = log(Li) \\ LL & = \sum_{i=1}^{n} LL_i \end{align*} $$

Gradient

$$ \begin{align*} \frac{\partial LL}{\partial \beta_{q}} & = \sum_{i}^{N} \frac{1}{L_i} \sum_{q} W_q \frac{\partial L_{iq}}{\partial \beta_{q}} \\ & = \sum_{i}^{N} \frac{1}{L_i} W_q \frac{\partial L_{iq}}{\partial \beta_{q}} \end{align*} $$

where

$$ \begin{align*} \frac{\partial L_{iq}}{\partial \beta_{q}} & = L_{iq} \frac{\partial log(L_{iq})}{\partial \beta_{q}} \\ & = L_{iq} \sum_t \sum_k Y_{tk} \frac{1}{P_{tkq}} \left[X_{tk}^{T} P_{tkq}(1-P_{tkq}) \right] \\ & = L_{iq}\sum_t \sum_k Y_{tk} X_{tk}^{T} (1-P_{tkq})\\ & = L_{iq} \sum_t \sum_k X_{tk}^{T} (Y_{tk}-P_{tkq})\\ \end{align*} $$

$$ \frac{\partial LL}{\partial \beta_{q}} = \sum_{i}^{N} \frac{1}{L_i} W_q L_{iq} \sum_t \sum_k X_{tk}^{T} (Y_{tk}-P_{tkq}) $$

Releases

No releases published

Packages

 
 
 

Languages